
Mean-field-like variational and renormalisation group studies of (1+1)-dimensional spin

models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 2949

(http://iopscience.iop.org/0305-4470/20/10/037)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 20 (1987) 2949-2959. Printed in the U K  

Mean-field-like variational and renormalisation group studies 
of (1 + 1)-dimensional spin models 
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t lnstitut de Physique Theorique, Universite de Lausanne, CH-1015 Lausanne, Switzerland 
$ lnstitut Laue-Langevin, 156 X,  F-38042 Grenoble Cedex, France 

Received 7 October 1986 

Abstract. Two recently proposed methods, the variational cluster wavefunction approxima- 
tion and the mean-field-like renormalisation group transformation, are used to describe 
the phase transitions in the Hamiltonian version of the two-dimensional Z ( 9 )  symmetric 
spin models. The convergence of the two schemes to the known results is analysed. It is 
shown that in their usual form neither of these methods can reproduce fine details of the 
phase diagram, although the renormalisation group method gives in general better conver- 
gence. 

1. Introduction 

Mean-field theory is the oldest and simplest approximation describing phase transitions. 
Since the advent of sophisticated renormalisation group ( RG) procedures a great variety 
of RG transformations has been proposed, suitable in different situations (cf renormali- 
sation in momentum or real space for classical or quantum variables, etc). An interesting 
procedure based on a mean-field-like approximation has been proposed by Indekeu 
er a1 (1982). They suggested an RG transformation based on rescaling clusters treated 
in a mean-field approximation (MFRG) .  

Extended mean-field-like approximations have been revived in a different context 
when Horn (1981) proposed a variational treatment of Hamiltonian lattice theories, a 
procedure that is similar in spirit to the Bethe-Peierls or extended mean-field approxi- 
mation. 

In both cases the k ing  model in a transverse field served as a reference to show 
that the procedures give a reasonable description of the phase transition. Later on the 
MFRG was applied to random systems (Droz er a1 1982, Plascak 1984a, Droz and 
Pekalski 1985) and to geometrical phase transitions (De’Bell 1983). It has also been 
generalised to study dynamic critical phenomena (Indekeu er a1 1984, Plascak 1984b). 
The variational calculation was used to describe phase transitions in the Z ( q )  model 
(Jengo er a1 1982) and the one-dimensional Heisenberg chain (S6lyom 1985). Except 
for the last calculation, usually only small clusters have been considered and the 
convergence of the method as the cluster size increases is not well known. 

In this paper we attempt to study the convergence of the two procedures mentioned 
above by analysing the results for the Z ( q )  model for as large clusters as could be 
treated with reasonable effort. The model, which was chosen for its non-trivial phase 
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diagram, and the two approximation schemes are described in 5 2. The details of the 
results of the variational calculation are given in 5 3, while those of the mean-field-like 
RG transformation are described in 5 4. The comparison of the efficiency of the two 
procedures as well as the conclusions are given in 5 5. 

2. The model and the approximation schemes 

In the present paper we will study the behaviour of the one-dimensional Hamiltonian 
version of the two-dimensional classical Z (  q )  symmetric spin model with cosine 
interaction between nearest neighbours. The classical model is defined by assigning 
to each lattice site i a classical spin vector, which, however, can point in one of only 
q possible directions characterised by the angle Oi = (27 r /q ) l i ,  Z, = 0, 1, 2, . . . , ( q  - 1). 
The energy of the system depends on the configuration of the spin directions 

In a simplest case the interaction is between first neighbours only and is of the form 

The one-dimensional Hamiltonian version of the model (Elitzur er a1 1979) has 
V( x)  = cos x. 

the form 
N 

H(A) = - [ i ( R j +  R:)+A cos(& - e,+,) ]  
I = l  

where R: and R ,  are the raising and lowering operators for the angle 8,: 

R:le,) = 18, + 2 m /  q )  

RI I 6, ) = 1 6, - 2 T /  4).  (2.3) 

The spin vector still points in one of the q possible directions. However, the RI 
operators induce transitions between neighbouring orientations. 

As was pointed out by Elitzur er a1 (1979) this model is self-dual and the ground-state 
energy satisfies the duality relationship 

Eo(A)  = A E O ( l / A ) .  (2.4) 

Duality does not necessarily hold for the excited states and also the degeneracy of 
the ground state can be different in the original and dual models. As seen from (2.2), 
for A >> 1 the spins line up parallel to each other. However, the q possible orientations 
of the spin are equivalent and therefore the ground state will be q-fold degenerate. 
In the opposite limit, A << 1, it is more convenient to work in a different basis defined 
by 

1 9  ( 2 . 5 )  

where the summation goes over the possible values of the angle 8,. In this basis the 
first part of the Hamiltonian is diagonal, while the second part can be expressed in 
terms of raising and lowering operators as 
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Clearly, for A << 1 it is energetically favourable to have n, = 0 at most sites and the 
ground state is non-degenerate. 

For q = 2 ,  3 and 4, corresponding to the Ising model, the three-state Potts model 
and the symmetric Ashkin-Teller model, respectively, there is a usual second-order 
phase transition between the two phases found above for A >> 1 and A << 1, occurring 
at A = 1, as imposed by the self-duality. For larger q values there is strong evidence 
(Elitzur et a1 1979, Hamer and Kogut 1980, Einhorn et a1 1980, Alcaraz and Koberle 
1980) for two successive phase transitions with a Kosterlitz-Thouless-like massless 
phase for intermediate couplings A, although the phase diagram in the case q = 5  is 
not yet clear (Rujan et a1 1981, Patk6s and RujAn 1985). 

In the following we study how these transitions are described, on the one hand, 
by the variational calculation and, on the other hand, by the mean-field-like RG 

approach. 
Our variational calculation is, in fact, an extended mean-field calculation using 

large clusters. The system is divided into clusters containing M atoms each. The 
wavefunction of the system is chosen as a product of identical cluster wavefunctions, 
which, in turn, are linear combinations with arbitrary coefficients of all the q," possible 
configurations of the states of the M atoms inside the cluster. The ground-state energy 
is obtained by minimising the expectation value 

with respect to the q M  coefficients of the trial wavefunction, corresponding to the 
different configurations. 

Using the Hamiltonian written in the form of (2.6) this procedure turns out to be 
equivalent to an  extended mean-field method in which a cluster of M spins is embedded 
into an effective medium acting on the two end spins. The Hamiltonian of the finite 
cluster is 

M-1 

(R:R ,+ ,+R,R:+ , ) -h (R ,+R, ) -h* (R;+RL)  (2.9) 
r = l  

where h is a complex effective field. The ground state of the finite system can be 
calculated exactly for arbitrary h and then h can be fixed by minimising the ground-state 
energy with respect to it. 

For small A the minimum will appear for h =0,  giving rise to a unique ground 
state. In the wavefunction representation many configurations will appear with zero 
weight and all coefficients are real. For large A, however, all coefficients will be finite 
and complex. The relative phase between the various coefficients will give rise to the 
q-fold degeneracy of the ground state. In terms of the effective field this will mean a 
finite complex value for h. 

It is expected that the ground-state energy obtained in this way converges to the 
exact ground state of the infinite chain when larger and larger clusters are taken. At 
the same time the location of the phase transition should also converge to its value in 
the infinite system. This convergence will be studied in the next section. 
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An alternative approach to locate phase transition points using mean-field clusters 
was proposed by Indekeu er a1 (1982). This method is based on performing a RG 

transformation on finite clusters by mapping a cluster of M spins on a cluster with a 
smaller number of spins M’.  

Let us consider a cluster of M spins with a symmetry-breaking field applied at the 
two ends as given by (2.9). The order parameter defined as 

will have a finite complex value, its modulus being, for small h, proportional to h. If 
a similar calculation is performed for a cluster with M ’  spins in an  external field h’, 
the order parameter will be O M # ( &  A’). Since the order parameter is proportional to 
the external field, a scaling relation can be defined by requiring 

(2.11) 

This gives a well defined scaling relationship between A and  A‘ .  The fixed-point 
coupling A ”  gives the location of the phase transition between the ordered and  
disordered phases, while linearisation of the scaling relation around the fixed point 
value gives in the usual way the critical exponent v 

A ‘ - A * = ( M / M ’ ) ’ ’ ” ( A  - A * ) .  (2.12) 

Both the location of the transition and  the value of the critical exponent depend 
on the number of sites in the cluster. In 0 4, we will study how the exact results are 
approached as larger and larger clusters are considered. 

3. Cluster variational calculation 

For this method an  ansatz for the wavefunction is necessary. A trial wavefunction will 
be constructed by dividing the infinite lattice into clusters of M sites and  labelling the 
sites by a cluster index a (  a = 1 , 2 , .  . . , oc) and an  intracluster index j = 1,2 ,  . . . , M. 
The state at  the site ( a , j )  can be characterised by na,, using the basis given in (2.5). 
Allowing for all possible configurations I{ no,,}) of the spin vectors inside a cluster, the 
cluster wavefunction is written as a linear combination of them with arbitrary 
coefficients a ( { n o , / } )  

The wavefunction of the infinite chain is chosen as a product of the cluster wavefunc- 
tions 

(3.2) 

We will assume, in what follows, that the clusters are identical in the sense that the 
coefficients a({ne , , } )  d o  not depend on the cluster index. Still, since the spin vector 
can point in q possible directions, there are q M  possible configurations for a cluster 
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and  therefore q M  arbitrary coefficients in the wavefunction. The minimalisation pro- 
cedure was performed for q = 2 ,3 , .  . . , 8  and  for clusters as large as could be reasonably 
treated numerically. 

For q = 2 ,  which is the Ising model, and  for which this type of calculation was 
done by Horn (1981) using clusters up  to three sites, our calculation was carried up  
to 14 sites. The results are given in tables 1 and 2. Below a certain A, the ground state 
is non-degenerate and disordered, while above A, a finite magnetisation appears 
continuously, as shown in figure 1. In order to analyse the series obtained for A, ,  the 
convergence accelerating procedure by Vanden Broeck and Schwartz ( 1979) ( V B S )  

Table 1. VBS table for the critical coupling of the Z ( 2 )  model.  The first column contains 
the results of the variational calculation for clusters with up  to 14 sites. 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0.5 
0.585 089 
0.631 785 
0.661 770 
0.682 621 
0.697 81 1 
0.709 203 
0.717 905 
0.724 623 
0.729 842 
0.733 907 
0.737 072 
0.739 526 
0.741 441 

0.688 580 
0.715 573 
0.730 219 
0.738 570 
0.743 373 
0.746 055 
0.747 371 
0.748 013 
0.748 226 
0.748 202 
0.747 499 
0.749 177 

0.747 594 
0.749 645 
0.749 876 
0.749 449 
0.748 636 
0.748 625 
0.748 332 
0.748 205 
0.748 227 
0.747 995 

0.749 906 
0.749 726 0.749 866 
0.750 352 0.749 893 0.749 866 
0.748 625 0.748 636 0.748 625 0.748 637 
0.748 636 0.748 625 0.748 637 0.748 625 
0.748 106 0.748 202 0.748 209 
0.748 224 0.748 209 
0.748 207 

Table 2. The ground-state energy and  the change in its slope at  A = 1 using site- and  
bond-cluster calculations, as  well as the order  parameter 0, for the Z ( 2 )  model.  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
L R S  approximant 
Exact 

- 1.25 0.250 00 
-1.256 986 0.203 92 
-1.260561 0,17704 
- 1.262 797 0.158 41 
-1.264343 0.14435 
-1.265 482 0.133 18 
-1.266358 0.12401 
-1.267 055 0.11629 
-1.267 622 0.109 68 
-1.268 093 0.103 93 
- 1.268 490 0.098 87 
-1.268 830 0.09437 
-1.269 125 0,09033 
- 1.269 382 0.086 68 
- 1.272 0.03 
-1.273 240 0 

0 866 025 
0 842 733 
0 826 48.3 
0 813 703 
0 803 046 
0 793 846 
0 785 724 
0 778 438 
0 7'1 822 
0 76.5 759 
0 760 160 
0 '54 957 
0 750 09: 
0 745 538 
0 65 
0 
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x 
Figure 1. Magnetisation in the k ing  model in a transverse field ( Z ( 2 )  model) obtained in 
the variational calculation for increasing cluster sizes M .  The broken curve shows the 
exact result. 

was applied. The subsequent approximants in column L+l are generated from those 
in column L and L-1 by the relation 

+ 1 + a L  1 1 
[ M ,  L+l]-[M, L] [ M ,  L-l]-[M, L]=[M+l, LI-[M, L] [M-1, L]-[M, L]' 

(3.3) 

The series to be analysed is put into the first column, while [ M, 01 =CO. The parameters 
aL are not uniquely defined. From the several suggested choices, the results of only 
one corresponding to 

aL=-[1-(-1)L]/2 (3.4) 
are reproduced in the tables. As is seen, unfortunately the results do not converge to 
Ac=l, the exactly known transition point. Other choices of aL do not give better results. 
This indicates that this variational calculation is notoriously slowly convergent. 

It is interesting to realise that a similar calculation can be performed in the dual 
model, where instead of a cluster of sites a cluster of bonds is taken. Figure 2 shows 
the variational ground-state energy for q = 2  and M = l  using site or bond clusters, 
respectively. As is seen, the dual model gives lower energy for A<1, while for A>l 
the original model gives better results. If in each regime the lower energy state is 

0 1 2 
h 

Figure 2. Ground-state energy of the Z ( 2 )  model in a site mean-field approximation (full 
curve) and in a bond mean-field approximation (broken curve). 
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taken, the transition to the ordered phase occurs at A = l ,  but is of first order. The 
jump in the slope of the energy at A = 1 decreases as the cluster size increases, as given 
in table 2, and eventually the second-order transition is recovered. 

The results of the site-cluster calculation for q = 3  are shown in table 3. In  contrast 
to the q = 2  case the transition to the ordered phase is of first order for any cluster size, 
as observed already by Horn (1981) for short clusters. In our calculation we took 
clusters with maximum M = 8  sites. The discontinuity of the slope decreases with 
increasing cluster size and  in the limit M+co a second-order transition should be 
recovered. Here, too, the convergence of the critical coupling to A , = l  is extremely 
slow. When the dual model is also considered in a bond-cluster approximation, the 
situation turns out to be the same as for q = 2 .  The bond-cluster approximation gives 
lower energy for A < 1 without any transition while the site-cluster approximation is 
better for A > 1 and the first-order transition from the disordered to the ordered phase 
takes place at A,= 1. This discontinuity weakens as the cluster size increases, yielding 
after all a continuous transition. 

For q=4 ,  the behaviour is exactly the same as for q=2.  
When q>4,  it is expected that two transitions will take place at dual values of A 

with an extended critical ( Kosterlitz-Thouless-like) phase between the disordered and 
ordered phases. Unfortunately, this variational calculation, using site clusters, shows 
no  indication of this behaviour. The results obtained for q=5 ,  6, 7 and 8 with clusters 
containing up  to five or six sites are presented in table 4, together with the VBS 

Table 3. Critical coupling A, and the jump in the ground-state energy at A,  for the Z ( 3 )  
model for increasing cluster sizes. 

1 

3 
4 
5 
6 
7 
8 
VBS approximant 
Exact 

0.666 666 
0.743 8 15 
0.783 820 
0.808 937 
0.826 342 
0.839 158 
0.848 988 
0.856 748 
0.89 
1 

0.2500 
0.1914 
0.1608 
0.1405 
0.1253 
0.1 132 
0.1031 
0.0942 
0.08 
0 

Table 4. Critical coupling A, of the Z ( 9 )  model for increasing cluster sizes. 

M 9 = 5  

VBS approximant 

0.345 49 
0.410 16 
0.446 70 
0.470 56 
0.487 21 
0.499 4 
0.54 

9 = 6  

0.250 00 
0.298 04 
0.325 30 
0.343 16 
0.355 7 

0.39 

q = 7  9 = 8  

0.188 26 0.146 45 
0.22491 0.175 19 
0.245 75 0.191 54 
0.259 4 0.202 2 
0.268 9 0.209 8 

0.29 0.24 
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approximants for the critical coupling. The site cluster gives a transition to an  ordered 
phase far below A 5 1, contrary to the expectation. The region around A = 1 should 
in fact be in the Kosterlitz-Thouless phase and the ordering should occur for A > A c >  1 
only. 

Considering again the dual model with the bond-cluster approximation, it is found, 
as for other q values, that for A < 1 the bond-cluster method gives lower energy, while 
for A > 1 the site-cluster approach is better. For A 2 1 the lowest energy solution of 
the cluster variational method gives an ordered state and only one transition is found. 

We will return to the analysis of these results in 9 5 .  

4. Mean-field-like RG transformation 

In this section we will describe the results obtained when the mean-field-like RG method 
is applied to the Z ( q )  model. First of all, it is found that the best results are obtained 
when M and M ' ,  the numbers of sites in the clusters to be compared, are close enough, 
because then in each step of renormalisation only a smaller fraction of the degrees of 
freedom is eliminated. 

Choosing M ' =  M - 1, the results for the fixed point coupling A *  and the critical 
exponent v are given in table 5 for q = 2 .  Comparison with the results of the earlier 
variational calculation shows immediately that this RC transformation on the mean-field 
clusters enhances the convergence and a much better result is achieved. 

Table 5. Fixed-pointing coupling A '  of the mean-field-like RG transformation for the Z ( 4 )  
model and the critical exponent Y for increasing cell sizes. Mapping is always from M 
sites to M - 1 sites. 

A' 1' 

4 = 3  q = 5  

A' l.' A "  v 

0.7832 1.48 
0.8436 1.32 
0.8771 1.26 
0.8986 1.33 
0.9136 1.20 
0.9247 1.19 
0.9332 1.18 

0.9122 1.28 0.5837 1.65 
0.9402 1.12 0.6465 1.51 
0.9548 1.06 0.6846 1.48 
0.9638 1.02 0.7108 1.46 
0.9699 1.00 0.730 1.45 
0.9744 0.99 

A similar conclusion can be drawn from the results for q = 3. The fixed point 
coupling and the exponent v are also shown in table 5 .  For both q = 2 and q = 3 the 
VBS procedure gives an extrapolated critical coupling which is very close to A , =  1. 
However, the different choices of the a L  parameter in (3.3) give results which differ 
by a few per cent, so better accuracy cannot be achieved. 

The convergence of the exponent v is, on the other hand, very slow, their exact 
values being v = 1 for q = 2 and v = 0.833 for q = 3. 

For q = 5 ,  where two transitions are expected, the mean-field-like RG transformation 
gives a single usual second-order transition. The critical couplings and critical 
exponents obtained for different cluster sizes are listed in table 5 .  The critical coupling 
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seems to converge to a value of the order A * - 0.8, which is certainly too low compared 
to other estimates. 

The situation is the same for larger values of q. The scaling relation (2.11) has 
always only one non-trivial fixed point and  therefore strictly speaking only one 
transition is found. We can recognise, however, that a similar problem occurs when 
the Z( q )  model is studied by finite-size scaling (Patkbs and  Rujan 1985). In finite-size 
scaling the critical coupling is defined by requiring that the scaled mass gap be identical 
when two finite chains of different length are compared. In other words, the scaled 
mass gap ratio should be unity at  the critical coupling. This same quantity should be 
smaller than unity in a disordered phase and  larger than unity in an  ordered phase. 
In the Z( q )  model, where there should be an  extended critical Kosterlitz-Thouless-like 
phase, the scaled mass gap ratio should be unity over a finite range of couplings. 
Instead of that one finds that the scaled mass gap ratio is close to unity over a finite 
range and  then deviates on both sides. Similarly, we can expect that the quantity 
analogous to the scaled mass gap ratio, which is here 

will tend to unity in the coupling region corresponding to the critical massless phase. 
This ratio is shown in figure 3 for q = 7, M = 5,  M ' =  4 and M = 4, M ' =  3. There is 
a slight indication that the ratio (4.1) tends to unity in a region around A = 1, although 
from the present cluster sizes no definite conclusions can be drawn. 

0 1 2 3 4 

x 
Figure 3. The ratio of J & ( A ,  h ) / J h l , , = , ]  and do, ( A ,  h)/dhI , ,=,  for the Z ( 7 )  model 
comparing clusters with M = 4 to M '  = 3 and M = 5 to M '  = 4. 

5. Discussion and conclusions 

In earlier works, when the cluster variational approach and the mean-field-like RG 

transformation were proposed to study the phase transition in spin chains, usually 
only short clusters were considered. In the present paper we extended these calculations 
to large clusters in order to study the convergence of the methods as a function of 
increasing cluster sizes. It was found that the cluster variational approach for the 
critical coupling of the Z(q)  model gives such a slowly converging series that even 
from the largest available cluster sizes the extrapolated value of the critical coupling 
for q = 2 is about 25% off the correct value. This means that, for models where the 
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critical coupling is not known, this method cannot be used to locate it with good 
precision. 

The method, in its present form, namely assuming identical cluster wavefunctions, 
which makes it equivalent to a mean-field-like calculation, does not give a Kosterlitz- 
Thouless-like phase for large q for intermediate couplings A.  In the framework of a 
variational calculation one can choose other forms for the wavefunction which, e.g., 
d o  not break the translational invariance in such a drastic way as the cluster calculation 
and thereby correlations can be better built into the ansatz (Horn and Weinstein 1984, 
Duncan and Roskies 1985, Dagotto and Moreo 1985, Virosztek 1985). It is not clear 
whether such improved variational calculations can reproduce the Kosterlitz-Thouless 
phase (Jengo er a1 1982). 

The mean-field-like RG method gives a better result for the critical coupling for 
small q than the variational calculation, although convergence as a function of the 
cell size is still slow. As has been pointed out recently by Indekeu er a1 (1987), this 
can be due  to an improper choice of the scaling relation. Since the effective field acts 
on the spins at the boundary only, while the order parameter is the bulk magnetisation, 
their scaling dimensions can be different and the quantity aO,/ah should not be scale 
invariant. They propose an  RG transformation where three clusters of sizes M ,  M '  
and M" are compared. Alternatively one can keep a simple scaling relationship if, 
instead of the bulk magnetisation given in (2.10), the surface magnetisation 

OSM = a((R,)+(R:)+(R,)+(R+,))  (5.1) 

is used in (2.11). Whether this procedure gives a better convergence and clearer 
indication of a Kosterlitz-Thouless phase for large q will be the subject of further 
investigations. 
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